Точка О – центр вписанной в треугольник АВС окружности. К
плоскости данного треугольника проведен перпендикуляр ОК.
Найдите расстояние от точки К до сторон треугольника, если
АВ=ВС=30 см. АС=36 см. ОК=18 см.

В плоскости треугольника АВС из точки О проведем перпендикуляр ОМ на сторону АС, соединим К и М. По теореме о трех перпендикулярах МК будет перпендикулярен АС, значит КМ искомое расстояние. Аналогично можно поступить и со сторонами АВ и ВС, проведя перпендикуляры ОТ и ОР. Все найденные расстояния будут равны, т. К. ОТ=ОР=ОМ как радиусы вписанной окружности. А это радиусы, т. К. Радиус, проведенный в точку касания будет перпендикулярен этой касательной. Для нахождения МК нам понадобится радиус ОМ. Его будем искать по формуле S=1/2*P*r. r=2S/P. P периметр треугольника, S его площадь. S можете искать по формуле Герона или обычным способом, проведя высоту. S=48. r=96/32=3. Теперь найдем МК=корень из (KO^2+OM^2)=5





Похожие задачи: