Вершины треугольника ABC лежат на окружности. Докажите, что если АВ — диаметр окружности, то ∠C>∠A и ∠C>∠B.
Дано:
Доказать:
Доказательство:
2. Из вершины А треугольника АВС проведена высота АD. Точки F и Е - середины сторон АВ и АС. Найти периметр DEF, если периметр АВС = 64 см.
3. Биссектрисы углов В и С параллелограмма АВСD пересекаются в точке М, лежащей на стороне DA. Найдите периметр параллелограмма ABCD, если ВМ=6 см, а СМ=8 см.
4. В окружности радиуса √2 см проведена хорда, длина которой составляет одну треть диаметра. Найдите расстояние от центра окружности до этой хорды.
смотреть решение >>
2. Вокруг трапеции описана окружность, центр которой находится на ее большем основании. Найдите углы трапеции, если ее меньшее основание в два раза меньше большего основания.
3. Угол между биссектрисой и высотой, проведенной из вершины большего угла треугольника, равен 12*. Найдите углы этого треугольника, если его наибольший угол в четыре раза больше наименьшего угла.
4. О1 и О2 - центры двух касающихся внешним образом окружностей. Прямая О1О2 пересекает первую окружность (с центром в точке О1) в точке А. Найдите диаметр второй окружности, если радиус первой равен 5 см, а касательная, проведенная из точки А ко второй окружности, образует с прямой О1О2 угол в 30*.
смотреть решение >>
Вставьте пропущенные слова.
Окружность - это геометрическая фигура, состоящая из всех _______ плоскости, расположенных на ______________ расстоянии от данной точки.
Диаметр – это хорда, _____________________ через _______________ окружности. Касательная - это прямая, имеющая с окружностью __________ общую точку. Центральный угол – это угол, вершина которого совпадает с _______________
_______________. Вписанный угол измеряется ____________________ дуги, на которую он _________
____________. Вписанный угол, опирающийся на диаметр _______________.
смотреть решение >>