На сторонах АС и ВС треугольника ABC взяты соответственно точки М и К. Отрезки АХ и ВМ пересекаются в точке О. Найдите площадь треугольника СМК, если площади треугольников ОМА, ОАВ и OBK равны соответственно S1, S2, S3.
Решение.
Похожие задачи:
На сторонах AB, BC и AC треугольника ABC взяты точки K, L и T соответственно, причем LC:BL = 2:7. Найдите площадь треугольника ABC, если KBLT - параллелограмм с площадью, равной 7.
смотреть решение >>
смотреть решение >>
В треугольнике MNK медианы MP и NE пересекаются в одной точке O и равны 12 и 15 см соответственно. Найдите площадь треугольника MOE если MP перпендикулярно NP.
смотреть решение >>
смотреть решение >>
В декартовой системе координат даны прямые p и q, определяемые уравнениями соответственно 3y+4x-12=0 и 2y-3x-5=0
смотреть решение >>
Найдите:
а) площадь треугольника, образованного прямыми p и q и осью абсцисс
б) уравнение прямой q’ - образа прямой q при осевой симметрии относительно прямой p
смотреть решение >>
В треугольнике KMP стороны KM и KP равны соответственно 4 и 5. Найдите площадь треугольника, если: а)через прямую, содержащую сторону КП, и центр описанной около треугольника окружности можно провести по крайней мере 2 различных плоскости б) Через прямую АМ перпендикулярную КП, и центр вписанной в треугольник окружности можно провести по крайней мере 2 различных плоскости в) Существует прямая, не принадлежащая плоскости треугольника, пересекающая медиану ПБ и проходящая через центр вписанной в треугольник КМП окружности
смотреть решение >>
смотреть решение >>
В треугольнике KMP стороны KM и KP равны соответственно 4 и 5. Найдите площадь треугольника,
если: а)через прямую, содержащую сторону КП, и центр описанной около треугольника окружности можно провести по крайней мере 2 различных плоскости
б) Через прямую АМ перпендикулярную КП, и центр вписанной в треугольник окружности можно провести по крайней мере 2 различных плоскости
в) Существует прямая, не принадлежащая плоскости треугольника, пересекающая медиану ПБ и проходящая через центр вписанной в треугольник КМП окружности
смотреть решение >>
если: а)через прямую, содержащую сторону КП, и центр описанной около треугольника окружности можно провести по крайней мере 2 различных плоскости
б) Через прямую АМ перпендикулярную КП, и центр вписанной в треугольник окружности можно провести по крайней мере 2 различных плоскости
в) Существует прямая, не принадлежащая плоскости треугольника, пересекающая медиану ПБ и проходящая через центр вписанной в треугольник КМП окружности
смотреть решение >>