Докажите, что в любом треугольнике радиус R описанной окружности, радиус r вписанной окружности и расстояние d между центрами этих окружностей связаны равенством d2=R2-2Rr (формула Эйлера).
Решение.
« назад
вперед »
Похожие задачи:
1) Докажите, что сторона правильного восьмиугольника вычисляется по формуле a8=R корней (всё под этим корнем) из 2 минус корень из 2, где R-радиус описанной окружности 2) Докажите, что площадь правильного восьмиугольника со стороной a вычисляется по формуле S=2a квадрат*(корень из 2+1)
смотреть решение >>
Докажите, что прямая, отстоящая от центра окружности на расстояние, меньшее радиуса, пересекает окружность в двух точках. Пусть дана окружность с центром О и радиусом R и прямая а, отстоящая от центра на расстояние h < R.
смотреть решение >>
Докажите, что в задаче 36 окружности находятся одна вне другой, а в задаче 37 окружность радиуса 6 см находится внутри окружности радиуса 12 см.
смотреть решение >>
Даны две окружности с радиусами R1, R2 и расстоянием между центрами d. Докажите, что если каждое из чисел R1, R2 и d меньше суммы двух других сторон, то окружности пересекаются в двух точках.
смотреть решение >>
1) Из точки А к окружности с центром О и радиусом R проведена касательная. Докажите, что точка С касания лежит на основании равнобедренного треугольника ОАВ, у которого ОА = АВ, ОВ = 2R. 2) Проведите касательную к окружности, проходящую через данную
смотреть решение >>
Главная
Геометрия
Аксиома параллельных прямых
Аксиомы стереометрии и их простейшие следствия
Векторы
Вписанная и описанная окружности
Второй и третий признаки равенства треугольников
Геометрические построения
Движения
Декартовы координаты на плоскости
Декартовы координаты и векторы в пространстве
Длина окружности и площадь круга
Задачи на построение
Задачи повышенной трудности
Измерение отрезков
Измерение углов
Использование уравнений окружности и прямой при решении задач
Касательная к окружности
Конус
Координаты вектора
Куб, призма
Луч и угол
Медианы, биссектрисы и высоты треугольника
Метод координат
Многогранники
Многоугольники
Начальные сведения из стереометрии
Объемы и поверхности тел вращения
Объемы многогранников
Окружность
Определение подобных треугольников
Основные свойства простейших геометрических фигур
Параллелограмм и трапеция
Параллельность прямых и плоскостей
Параллельный перенос и поворот
Первый признак равенства треугольников
Периметр
Перпендикуляр. Прямые
Перпендикулярность прямых и плоскостей
Площади параллелограмма, треугольника и трапеции
Площади фигур
Площадь
Площадь многоугольника
Подобие фигур
Подобные треугольники
Понятие вектора
Понятие движения
Построение треугольника по трем элементам
Правильные многоугольники
Признаки параллельности двух прямых
Признаки подобия треугольников
Признаки равенства треугольников
Применение метода координат к решению задач
Применение подобия к доказательству теорем и решению задач
Простейшие задачи в координатах
Прямая и отрезок
Прямоугольник, ромб, квадрат
Прямоугольные треугольники
Решение треугольников
Синус, косинус и тангенс угла
Скалярное произведение векторов
Сложение и вычитание векторов
Смежные и вертикальные углы
Соотношения между сторонами и углами прямоугольного треугольника
Соотношения между сторонами и углами треугольника
Сравнение отрезков и углов
Сумма углов треугольника
Тела вращения
Тела и поверхности вращения
Теорема Пифагора
Тригонометрические соотношения
Умножение вектора на число
Уравнения окружности и прямой
Центральные и вписанные углы
Цилиндр
Четыре замечательные точки треугольника
Четырехугольники
Алгебра
Математика
Контакты