Даны четыре различные точки А, В, С и D. Известно, что точки А, В, С лежат на одной прямой и точки В, С, D также лежат на одной прямой. Докажите, что все четыре точки А, В, С, D лежат на одной прямой.
Прямые проходят через точки В и С. По аксиоме через любые две различные точки можно провести единственную прямую и получаем, что это одна и та же прямая. Так как она проходит через точки А, В, С и В, С, D, то все четыре точки А, В, С и D лежат на этой прямой. Что и требовалось доказать.
Похожие задачи: