Найдите площадь треугольника по трем сторонам:
По формуле Герона получаем:
По формуле Герона получаем:
По формуле Герона получаем:
По формуле Герона получаем:
По формуле Герона получаем:
По формуле Герона получаем:
« назад
вперед »
Похожие задачи:
Площадь треугольника S см2 со сторонами а см, b см и с см можно вычислить по формуле Герона:
S = √р(р - а)(р - b)(p - с), где р - полупериметр треугольника.
Пользуясь калькулятором, найдите площадь треугольника,стороны которого равны:
а) 12 см, 16 см, 24 см; б) 18 см, 22 см, 26 см.
смотреть решение >>
Выведите формулу Герона для площади треугольника:
смотреть решение >>
Докажите, что площадь равностороннего треугольника вычисляется по формуле, где а — сторона треугольника. Найдите площадь равностороннего треугольника, если его сторона равна: а) 5 см; б) 1,2 см; в) 2√2 дм.
смотреть решение >>
1. В прямоугольном треугольнике биссектриса острого угла разделила катет на отрезки 15 и 12. Найдите площадь треугольника.
2. Точка M лежит внутри равностороннего треугольника на расстоянии 3√3 от двух его сторон и на расстоянии 4√3 от третьей стороны. Найдите длину сторон треугольника.
3. Стороны треугольника относятся как 13:14:15, а высота, проведенная к большей стороне равна 33,6. Найдите большую сторону.
4. В треугольнике ABC сторона AC равна 21, высота BH равна 12, синус угла A равен 0,6. Найдите длину отрезка CH.
5. Площадь остроугольного треугольника равна 10√3 , а две его стороны равны 5 и 8. Найдите третью сторону.
смотреть решение >>
Периметр равнобедренной трапеции равен 52. В трапецию вписана окружность радиуса 6. Прямая, проходящая через центр окружности и вершину трапеции, отсекает от трапеции треугольник. Найдите отношение площади этого треугольника к площади трапеции.
смотреть решение >>
Главная
Геометрия
Аксиома параллельных прямых
Аксиомы стереометрии и их простейшие следствия
Векторы
Вписанная и описанная окружности
Второй и третий признаки равенства треугольников
Геометрические построения
Движения
Декартовы координаты на плоскости
Декартовы координаты и векторы в пространстве
Длина окружности и площадь круга
Задачи на построение
Задачи повышенной трудности
Измерение отрезков
Измерение углов
Использование уравнений окружности и прямой при решении задач
Касательная к окружности
Конус
Координаты вектора
Куб, призма
Луч и угол
Медианы, биссектрисы и высоты треугольника
Метод координат
Многогранники
Многоугольники
Начальные сведения из стереометрии
Объемы и поверхности тел вращения
Объемы многогранников
Окружность
Определение подобных треугольников
Основные свойства простейших геометрических фигур
Параллелограмм и трапеция
Параллельность прямых и плоскостей
Параллельный перенос и поворот
Первый признак равенства треугольников
Периметр
Перпендикуляр. Прямые
Перпендикулярность прямых и плоскостей
Площади параллелограмма, треугольника и трапеции
Площади фигур
Площадь
Площадь многоугольника
Подобие фигур
Подобные треугольники
Понятие вектора
Понятие движения
Построение треугольника по трем элементам
Правильные многоугольники
Признаки параллельности двух прямых
Признаки подобия треугольников
Признаки равенства треугольников
Применение метода координат к решению задач
Применение подобия к доказательству теорем и решению задач
Простейшие задачи в координатах
Прямая и отрезок
Прямоугольник, ромб, квадрат
Прямоугольные треугольники
Решение треугольников
Синус, косинус и тангенс угла
Скалярное произведение векторов
Сложение и вычитание векторов
Смежные и вертикальные углы
Соотношения между сторонами и углами прямоугольного треугольника
Соотношения между сторонами и углами треугольника
Сравнение отрезков и углов
Сумма углов треугольника
Тела вращения
Тела и поверхности вращения
Теорема Пифагора
Тригонометрические соотношения
Умножение вектора на число
Уравнения окружности и прямой
Центральные и вписанные углы
Цилиндр
Четыре замечательные точки треугольника
Четырехугольники
Алгебра
Математика
Контакты