В основании четырёхугольной пирамиды КАВСD лежит квадрат с диагональю d см. Боковое ребро KB перпендикулярно плоскости основания и равно h см. Найти Sбок. если d=6, h=3корня из2

найдем сторону основания а -- а=d/√2тогда площадь граней АВК = КВС= 1/2*h*a=1/2*h*d/√2найдем длину ребер АК=КС=c=√(h^2+a^2)=√(h^2+(d/√2)^2)тогда площадь граней АDК = КDС=1/2*ca=1/2*√(h^2+(d/√2)^2)*d/√2Sбок=S(АВК)+S(КВС)+S(АDК)+S(КDС)=2*1/2*h*d/√2 +2*1/2*√(h^2+(d/√2)^2)*d/√2==h*d/√2 +√(h^2+(d/√2)^2)*d/√2=d/√2 *(h+√(h^2+(d/√2)^2))подставим значения из условия





Похожие задачи: