Начертите тупоугольный треугольник MNK и укажите точку, равноудалённую от его вершин.
В этом случае точка А равноудаленная от вершин треугольника МNK
Похожие задачи:
Даны две параллельные прямые b и с и точка А, не лежащая ни на одной из них них. Постройте равносторонний треугольник ABC так, чтобы вершины В и С лежали соответственно на прямых b и c. Сколько решений имеет задача?
смотреть решение >>
смотреть решение >>
Точка, лежащая в одной из пересекающихся плоскостей, удалена от второй плоскости на 6 см, а от линии их пересечения - на 12 см. Вычислите угол между плоскостями.
смотреть решение >>
Даны точки М(3;0;-1), К(1;3;0), Р(4;-1;2). Найдите на оси Ох такую точку А, чтобы векторы МК и РА были перпендикулярны.
Две вершины равностороннего треугольника расположены в плоскости альфа. Угол между плоскостью альфа и плоскостью данного треугольника равен фи. Сторона треугольника равна m. Вычислите:
1) расстояние от третьей вершины треугольника до плоскости альфа;
2) площадь проекции треугольника на плоскость альфа.
смотреть решение >>
В треугольнике ABC AB=4, BC=7, AC=9. Найдите:а) OH ( О-центр опис. окр., H-точка пересечения высот)б) площадь отротреугольника (вершины которого являются основаниями высот)
смотреть решение >>
как я помню точка пересечения высот и есть ц. опис окружности =-= разумнее О - как ц. впис. окружности взять ну или как в ваших соображениях наиболее будет актуально)))
смотреть решение >>
Высота равнобедренного треугольника, опущенная из его вершины на основание, равна 26. На каком расстоянии отстоит от вершины этого равнобедренного треугольника точка пересечения его биссектрис, если длина основания составляет 60% от длины боковой стороны треугольника?
смотреть решение >>
смотреть решение >>
В треугольнике ABC, AC=CB=8, угол ACB= 120 градусов. Точка M удалена от плоскости треугольника на расстоянии 12 см. Точка M удалена от плоскости треугольника на расстоянии 12 см и находится на равном расстоянии от вершин треугольника ABC. Найти угол между MA и плоскостью треугольника ABC
смотреть решение >>
смотреть решение >>