В треугольнике ABC, AC=CB=8, угол ACB= 120 градусов. Точка M удалена от плоскости треугольника на расстоянии 12 см. Точка M удалена от плоскости треугольника на расстоянии 12 см и находится на равном расстоянии от вершин треугольника ABC. Найти угол между MA и плоскостью треугольника ABC
В треугольнике ABC, AC=CB=8, угол ACB= 120 градусов. Точка M удалена от плоскости треугольника на расстоянии 12 см и находится на равном расстоянии от вершин треугольника ABC. Найти угол между MA и плоскостью треугольника ABCТочка M находится на равном расстоянии от вершин треугольника ABC, следовательно, наклонные МА, МС и МВ равны, их проекции также равны, а М проецируется в центр О описанной вокруг ∆ АВС окружности. ОА=ОВ=ОС=RУглы при А и В равны, как углы при основании равнобедренного треугольника.∠А=∠В=(180º-120º):2=30ºПо т. синусовR=(AC:sin 30º):2=(8:0,5):2=8 см∆ МOA - прямоугольный, МО=12, ОВ=8, и tg ∠MAO=12/8=1,5∠MAO = ≈56º20’
Похожие задачи: