Найдите площадь равнобедренной трапеции с основаниями 2 см и 6 см, если угол при большем основании равен а.
Дано:
Решение:
Ответ:
2. Вокруг трапеции описана окружность, центр которой находится на ее большем основании. Найдите углы трапеции, если ее меньшее основание в два раза меньше большего основания.
3. Угол между биссектрисой и высотой, проведенной из вершины большего угла треугольника, равен 12*. Найдите углы этого треугольника, если его наибольший угол в четыре раза больше наименьшего угла.
4. О1 и О2 - центры двух касающихся внешним образом окружностей. Прямая О1О2 пересекает первую окружность (с центром в точке О1) в точке А. Найдите диаметр второй окружности, если радиус первой равен 5 см, а касательная, проведенная из точки А ко второй окружности, образует с прямой О1О2 угол в 30*.
смотреть решение >>
смотреть решение >>
2. В равнобедренной трапеции тупой угол равен 135 градусов меньше основание равно 4 см, а высота 2 см найдите площадь трапеции?
3. Высота трапеции в 3 раза больше одного из оснований, но вдвое меньше другого. Найдите основания трапеции и высоту если площадь трапеции равна 168 см в квадрате?
4. В треугольнике АВС угол А= В углу= 75 градусов. Найдите ВС если площадь треугольника равна 36 см в квадрате.
смотреть решение >>
2) Найдите объем параллелепипеда, если его основание имеет стороны 3м и 4м и угол между ними 30(градусов), а одна из диагоналей образует с плоскостью основания уго 30(градусов).
3) Найдите объем пирамиды, в основании которой лежит параллелограмм со сторонами 2 и (под корнем 3) и угол между ними 30(градусов), если высота пирамиды равна меньшей диагонали основания.
смотреть решение >>