Точки В и С лежат соответственно на положительных полуосях Ох и Оу, а точка А лежит на отрицательной полуоси Ох, причем ОА=а, OB=b, OC=h. Найдите стороны АС и ВС треугольника ABC.
Дано:
Найти АС, ВС.
2. Две окружности с центрами в точках О1 и О2 пересекаются в точках А и А1, а отрезки АВ и АС - их диаметры. Найдите величины углов АА1В и АА1С и докажите, что точки В, А1 и С лежат на одной прямой.
3. Медианы треугольника со сторонами 5 см, 6 см и 7 см пересекаются в точке О. Найдите расстояние от точки О до прямых, содержащих стороны треугольника.
4. Четырехугольник ABCD вписан в окружность. Известно, что угол ABD=30*, угол ACB=30*, угол BDC=20*. Найти углы четырехугольника ABCD.
смотреть решение >>
прямой BC.
смотреть решение >>
смотреть решение >>
2. Из вершины А треугольника АВС проведена высота АD. Точки F и Е - середины сторон АВ и АС. Найти периметр DEF, если периметр АВС = 64 см.
3. Биссектрисы углов В и С параллелограмма АВСD пересекаются в точке М, лежащей на стороне DA. Найдите периметр параллелограмма ABCD, если ВМ=6 см, а СМ=8 см.
4. В окружности радиуса √2 см проведена хорда, длина которой составляет одну треть диаметра. Найдите расстояние от центра окружности до этой хорды.
смотреть решение >>