Найдите объем пирамиды с высотой h, если: а) h=2 м, а основанием является квадрат со стороной 3 м; б) h=2,2 м, а основанием является треугольник ABC, в котором АВ=20 см, BC= 13,5 см, ∠АВС=30°.
« назад
вперед »
Похожие задачи:
Основанием прямой призмы АВСА1В1С1 является равнобедренный треугольник, в котором АВ=АС=2sqrt(2), ВС=2. Высота призмы равна 1. Найдите градусную меру угла между ребром АС и диагональю А1В боковой грани.
смотреть решение >>
Основанием прямой призмы АВСА1В1С1 является равнобедренный треугольник, в котором АВ=АС=2sqrt(2), ВС=2. Высота призмы равна 1. Найдите градусную меру угла между ребром АС и диагональю А1В боковой грани.
(sqrt -корень из)
смотреть решение >>
Основанием пирамиды давс является правильный треугольник авс, сторона которого равна а. Ребро да перпендикулярно к плоскости авс, а плоскость двс составляет с плоскостью авс угол 30гр. Найдите площадь главной поверхности пирамиды
смотреть решение >>
Основанием пирамиды DABC является правильный треугольник ABC сторона которого = а....
Ребро DA перпендикулярно к плоскости АВС, а плоскость DBC составляет с плоскостью АВС угол 30*.
Найдите площадь боковой поверхности пирамиды.
смотреть решение >>
Основанием наклонной призмы является равносторонний треугольник со стороной а; одна из боковых граней перпендикулярна основанию и является ромбом, у которого меньшая диагональ равна с. Найдите объем призмы.
смотреть решение >>
Главная
Геометрия
Аксиома параллельных прямых
Аксиомы стереометрии и их простейшие следствия
Векторы
Вписанная и описанная окружности
Второй и третий признаки равенства треугольников
Геометрические построения
Движения
Декартовы координаты на плоскости
Декартовы координаты и векторы в пространстве
Длина окружности и площадь круга
Задачи на построение
Задачи повышенной трудности
Измерение отрезков
Измерение углов
Использование уравнений окружности и прямой при решении задач
Касательная к окружности
Конус
Координаты вектора
Куб, призма
Луч и угол
Медианы, биссектрисы и высоты треугольника
Метод координат
Многогранники
Многоугольники
Начальные сведения из стереометрии
Объемы и поверхности тел вращения
Объемы многогранников
Окружность
Определение подобных треугольников
Основные свойства простейших геометрических фигур
Параллелограмм и трапеция
Параллельность прямых и плоскостей
Параллельный перенос и поворот
Первый признак равенства треугольников
Периметр
Перпендикуляр. Прямые
Перпендикулярность прямых и плоскостей
Площади параллелограмма, треугольника и трапеции
Площади фигур
Площадь
Площадь многоугольника
Подобие фигур
Подобные треугольники
Понятие вектора
Понятие движения
Построение треугольника по трем элементам
Правильные многоугольники
Признаки параллельности двух прямых
Признаки подобия треугольников
Признаки равенства треугольников
Применение метода координат к решению задач
Применение подобия к доказательству теорем и решению задач
Простейшие задачи в координатах
Прямая и отрезок
Прямоугольник, ромб, квадрат
Прямоугольные треугольники
Решение треугольников
Синус, косинус и тангенс угла
Скалярное произведение векторов
Сложение и вычитание векторов
Смежные и вертикальные углы
Соотношения между сторонами и углами прямоугольного треугольника
Соотношения между сторонами и углами треугольника
Сравнение отрезков и углов
Сумма углов треугольника
Тела вращения
Тела и поверхности вращения
Теорема Пифагора
Тригонометрические соотношения
Умножение вектора на число
Уравнения окружности и прямой
Центральные и вписанные углы
Цилиндр
Четыре замечательные точки треугольника
Четырехугольники
Алгебра
Математика
Контакты