Даны точки A и B такие, чо AB=a. Точка C определена равенством AC=3BC(векторы). Найдите геометрическое место точек M плоскости ( в зависимости от a), для которых |MA|^2+2|MB|^2+|MC|^2=20
АС = 3ВС, ВС = х, тогда х+а = 3х, х = а/2. Все три точки расположены на одной прямой АС. Поместим начало координат в точку А. Тогда точки будут иметь координаты:А(0;0), В(а;0), С(1,5а;0). Выберем на плоскости произвольную точку М(х; у). Тогда:МА^2 = x^2 + y^2MB^2 = (x-a)^2 + y^2MC^2 = (x - 1,5a)^2 + y^2Тогда уравнение, приведенное в условии будет иметь вид: x^2 + y^2 + 2x^2 - 4ax + 2a^2 +2y^2 + x^2 - 3ax + 2,25a^2 + y^2 - 20 = 0Приведем подобные члены:4x^2 + 4y^2 - 7ax + (4,25a^2 - 20) = 0 Или, поделив на 4 и выделив полный квадрат:(x - (7a/8))^2 + y^2 = 5 +(13/64)a^2Это уравнение окружности с центром в т. О( (7а/8); 0) и радиусом:кор(5 +(13/64)a^2)Похожие задачи: