1) Из одной точки проведены две касательные к окружности. Докажите, что отрезки касательных МР и MQ равны. 2) Докажите, что через одну точку не может проходить больше двух касательных к окружности.


1) В ΔОРМ и ΔOQM:


ОМ — общая,


ОР = OQ, как радиусы,


ОР ⊥ МР, OQ ⊥ MQ (т.к. МР и MQ — касательные).


Таким образом, ΔОРМ = ΔOQM по 1-му признаку равенства треугольников. Откуда МР = МQ.


2) Пусть через точку М можно провести три касательных к окружности: МР, MQ, МА. Тогда из п. 1 следует, что МР = MQ = MA, откуда точки Р, Q, А лежат на одной окружности с центром М. Получилось, что две окружности имеют три общие очки. Противоречие. В
1) Окружности с центрами О и О1 пересекаются в точках А и В. Докажите, что прямая АВ перпендикулярна прямой ОО1
2) Докажите, что две окружности не могут пересекаться более чем в двух точках. Мы это доказали. Таким образом, через данную точку нельзя провести более двух касательных к данной окружности.






Похожие задачи: