В треугольники АВС угол С прямой. АВ=с, ВС=а. Из вершины А проведен отрезок AD длиной m, перпендикулярный плоскости треугольника. Найдите расстояние от точки D до конца ВС?
Рисунок: рисуем тетраэдр ABCD; дано:АВ=с, ВС=а, AD=m Решение:1) Рассмотрим треугольник DAB-прямоугольный, угол А=90 градусов т.к. AD перпендикулярен ACB; BD^{2}=AD^{2}+AB^{2}; BD= квадратный корень из (m^{2}+c^{2});2) Рассмотрим треугольник ABС- прямоугольный по условию АС^{2}+СВ^{2}=АВ^{2}, АС^{2}=АВ^{2}-СВ^{2}; АС= квадратный корень из(c^{2}-a^{2});Рассмотрим треугольник DAС-прямоугольный, угол А=90 градусов т.к. AD перпендикулярен ACB; DС^{2}=АС^{2}+AD^{2}; DС= квадратный корень из (c^{2}-a^{2}+ m^{2}). Ответ: BD= квадратный корень из (m^{2}+c^{2}) ; DС= квадратный корень из (c^{2}-a^{2}+ m^{2})Похожие задачи: