Из вершины большего угла треугольника со сторонами 20, 34, 42 см возведён перпендикуляр к плоскости этого треугольника длиной 30 см. Найдите расстояние от его концов до большей стороны треугольника.
Вершину большего угла обозначим В, возведём перпендикуляр ВД. Из точек В и. Д проведём перпендикуляры ВЕи ДЕ к большей стороне. Их и вычислим. Треугольники АВД и СВД-прямоугольные. Катеты их известны. По ним находим АД=36.06, ДС-45.34. По формуле Герона находим площадь АДС=714.05. Эта же площадь равна половине произведения АС на ДЕ. Отсюда находим ДЕ=34. Затем по катетам ДЕ и ВД находим ВЕ=16.Похожие задачи: