2. Точка М равноудалена от всех вершин равнобедренного прямоугольного треугольника АСВ (<С=90⁰), АС=ВС=4 см. Расстояние от точки М до плоскости треугольника равно 2√3 см.
1) Докажите, что плоскость АМВ перпендикулярна плоскости АВС.
2) Какой угол плоскость ВМС составляет с плоскостью АВС?
3) Найдите угол между МС и плоскостью АВС.
4) Найдите расстояние от точки Е-середины стороны АС до плоскости ВМС.
1. Поскольку М равноудалена от вершин АВС, то её проекция О на поскость ABC тоже равноудалена от вершин, то есть О - центр окружности, описанной вокруг прямоугольного треугольника АВС. Поэтому О лежит точно в середине гипотенузы. СО перпендикулярно АВ, поскольку треугольник равнобедренный, и медиана одновременно - высота. МО перпендикулярно СО, поскольку МО вообще перпендикулярно плоскости АВС. Поэтому плоскости АВС и АМС взамино перпендикулярны, а угол МОС - их двугранный угол, равный, само собой, 90 градусов. Далее "пп" означает "перпендикулярно" "тр" - "треугольник" "птр" - прямоугольный "тр" :))) 2. ОР пп АВ; СР = РВ = РО = 2; МО = 2*sqrt(3); Поэтому tg(MPO) = 1/sqrt(3); Угол МРО = 60 градусам.3. В птр OMC СО = АС*sin(45) = 2*sqrt(2); MO = 2*sqrt(3); tg(MCO) = sqrt(3/2);4. Достаточно найти расстояние от точки О до плоскости МСВ, поскольку ЕО параллельно ВС, а - следовательно, и всей плоскости ВМС. К - высота в птр ОМР, ОК = ОР*sin(MPO) = 2*sqrt(3)/2 = sqrt(3)Похожие задачи: