В треугольнике ABC ВС = 34 см. Перпендикуляр MN, проведенный из середины ВС к прямой АС, делит сторону АС на отрезки AN= 25 см и NC= 15 см. Найдите площадь треугольника ABC.
Дано:
Решение:
Ответ:
2. Две окружности с центрами в точках О1 и О2 пересекаются в точках А и А1, а отрезки АВ и АС - их диаметры. Найдите величины углов АА1В и АА1С и докажите, что точки В, А1 и С лежат на одной прямой.
3. Медианы треугольника со сторонами 5 см, 6 см и 7 см пересекаются в точке О. Найдите расстояние от точки О до прямых, содержащих стороны треугольника.
4. Четырехугольник ABCD вписан в окружность. Известно, что угол ABD=30*, угол ACB=30*, угол BDC=20*. Найти углы четырехугольника ABCD.
смотреть решение >>
2. Основание равнобедренного треугольника равно 12 см, а высота, опущенная на основание, - 8 см. Найдите высоту, опущенную на боковую сторону.
3. сторона треугольника, противолежащая углу 60* равна 5 корень из 6 см, а наименьший угол треугольника равен 45*. Найдите наименьшую сторону треугольника.
смотреть решение >>
2. Точка M лежит внутри равностороннего треугольника на расстоянии 3√3 от двух его сторон и на расстоянии 4√3 от третьей стороны. Найдите длину сторон треугольника.
3. Стороны треугольника относятся как 13:14:15, а высота, проведенная к большей стороне равна 33,6. Найдите большую сторону.
4. В треугольнике ABC сторона AC равна 21, высота BH равна 12, синус угла A равен 0,6. Найдите длину отрезка CH.
5. Площадь остроугольного треугольника равна 10√3 , а две его стороны равны 5 и 8. Найдите третью сторону.
смотреть решение >>