Четырехугольник ABCD задан координатами своих вершин: А(-1; 2), В( 1; -2), С (2; 0), D(1; 6). Докажите, что ABCD — трапеция, и найдите ее площадь.
2)основания трапеции ABCD равны 1 и 3. диагонали АС и BD пересекаются в точке О. найдите отношение площадей треугольников AOB и COD.
смотреть решение >>
2. Две окружности с центрами в точках О1 и О2 пересекаются в точках А и А1, а отрезки АВ и АС - их диаметры. Найдите величины углов АА1В и АА1С и докажите, что точки В, А1 и С лежат на одной прямой.
3. Медианы треугольника со сторонами 5 см, 6 см и 7 см пересекаются в точке О. Найдите расстояние от точки О до прямых, содержащих стороны треугольника.
4. Четырехугольник ABCD вписан в окружность. Известно, что угол ABD=30*, угол ACB=30*, угол BDC=20*. Найти углы четырехугольника ABCD.
смотреть решение >>
смотреть решение >>
а) Сравните площади треугольников ABD и ACD
б) Сравните площади треугольников ABO и CDO
в) Докажите что OA*OB=OC*OD
2. Основание равнобедренного треугольника относится к боковой стороне как 4:3, а высота, проведенная к основанию, равна 30 см. Найдите отрезки, на которые эту высоту делит биссектриса угла при основании.
3. Прямая AM -касательная к окружности, AB-хорда этой окружности. Докажите что угол MAB измеряется половиной дуги AB, расположенной внутри угла MAB.
смотреть решение >>