Из вершин А и В равностороннего треугольника АВС восстановлены перпендикуляры АА1 и ВВ1 к плоскости треугольника. Найдите расстояние от вершины С до середины отрезка А1B1, если АВ = 2 м, СА1 = 3 м; СВ1 = 7 м и отрезок А1B1 не пересекает плоскость треу
Проведем CK ⊥ AB и К1К параллельно АА1 и ВВ1. Тогда искомое расстояние — СК1.
АА1 || КК1 || ВВ и лежат в одной плоскости. Значит ВВ1А1А — трапеция, а КК1 — средняя линия трапеции, так как CK - медиана и высота. Тогда
Так что
Похожие задачи: