В прямом параллелепипеде боковое ребро 1м, стороны основания 23дм и 11дм, а диагонали основания относятся как 2:3. Найдите площади диагональных сечений.
Основание параллелепипеда — параллелограмм со сторонами а1 = 23дм и а2 = 11дм и диагоналями d1 и d2, отношение которых d1 : d2 = 2 : 3. Пусть d1 = 2k, тогда d2 = 3k.
В параллелограмме сумма квадратов всех сторон равна сумме квадратов диагоналей, так что
Так что d1 = 20(дм) и d2 = 30(дм). Далее, высота h = 1м = 10дм и площади диагональных сечений вычисляются по формулам:
Ответ: 2м2 и 3м2.
Похожие задачи: