В прямоугольнике ABCD AD=5; острый угол между диагоналями равен угол(AOB)=arcsin(40/41) (О - точка пересечения диагоналей); K принадлежит BC, BK:KC=2:3; L принадлежит CD, CL:CD=2:3
а)2AK-LB? ( AK, LB(вектор))
б) угол между лучами BL и AK
Пусть угол АОВ = р = arcsin(40/41). cosp = 9/41. Из равнобедр тр-ка АОВ найдем сторону АВ:АВ = 2*2,5*tg(p/2) = 5*(sinp/(1+cosp)) = 5*4/5 = 4LD = CD/3 = 4/3. ВК = 2, КС = 3.а) Теперь поместим начало координат в вершину А прямоугольника. Расставим координаты необходимых точек:В(0; 4), К(2; 4), L(5; 4/3), А(0; 0). Теперь распишем координаты необходимых в задаче векторов:АК" : (2; 4), LB": (-5; 8/3). Тогда вектор (2AK" - LB"): (4+5; 8-(8/3)): (9; 16/3) (2AK" - LB"): (9; 16/3).б) Будем искать cosq, где q - угол между векторами АК" и BL", через скалярное произведение этих векторов.сosq = (АК" BL") / |AK"||BL"|.АК" : (2; 4), BL": (5; -8/3). (АК" BL") = 2*5 + 4*(-8/3) = - 2/3|AK"| = кор( 4 + 16) = 2кор5|BL"| = кор(25 + 64/9) = 17/3cosq = -(2/3) /[(2кор5) *(17/3) = - 1/17кор5В итоге острый угол между векторами BL" и AK" составляет : arccos (1/(17кор5))Похожие задачи: