Верно ли следующее утверждение: В любую трапецию можно вписать окружность
Вписанной в многоугольник окружностью называется окружность, касающаяся его сторон. Если многоугольник взят произвольно, то в него нельзя вписать и около него нельзя описать окружность. В случае треугольника всегда можно построить, как вписанную, так и описанную окружность. В четырёхугольник окружность можно вписать лишь в том случае, если суммы его противоположных сторон одинаковы; из всех параллелограммов лишь в ромб (в частности, в квадрат) можно вписать окружность. Центр её лежит на пересечении диагоналей. Около трапеции можно описать окружность только тогда, когда она равнобочная.
В четырехугольник окружность вписать только в том случае, если суммы противоположных сторон равны, поэтому в общем случае это утверждение неверно.
Похожие задачи:
1. В окружность радиуса 5 см вписан прямоугольный треугольник так, что один из его катетов вдвое ближе к центру, чем другой. Найти длину этих катетов. 2. В сектор АОВ с радиусом R и углом 90° вписана окружность, касающаяся отрезков ОА, 0В и дуги АВ. Найти радиус окружности. 3. В равнобедренной трапеции диагонали пересекаются под углом 60° Найти диагонали и нижнее основание трапеции, если верхнее основание 3 м, а боковая сторона трапеции 4 м. 4. Из точки N, лежащей вне окружности, проведены к ней две секущие, образующие угол 45°. Меньшая дуга окружности, заключенная между сторонами угла, равна 30°. Найти величину большей дуги. 5. Внутри параллелограмма взята произвольная точка, которую соединили со всеми его вершинами. Найти отношение суммы площадей двух противолежащих треугольников к сумме площадей. смотреть решение >>