Вершины четырехугольника лежат в точках A(-3;-2), B(2;1), С(-1;6), D(-6;3). Докажите, что четырехугольник ABCD является квадратом.
Знайдемо середини діагоналей чотирикутникасередина діагоналі AС: x=(-3+(-1))/2=-2; y=(-2+6)/2=2середина діагоналі BD: x=(2+(-6))/2=-2; y=(1+3)/2=2середини діагоналей даного чотирикутника збігаються, значить він є параллелограмом По формулі відстані знайдемо довжини сторін чотирикутника ABCDAB=корінь((2-(-3))^2+(1-(-2))^2)=корінь(25+9)=корінь(34)BC=корінь((-1-2)^2+(6-1)^2)=корінь(9+25)=корінь(34)CD=корінь((-6-(-1))^2+(3-6)^2)=корінь(25+9)=корінь(34)AD=корінь((-6-(-3))^2+(3-(-2))^2)=корінь(9+25)=корінь(34)сторони даного параллелограма рівні, тому він є ромбом. По формулі відстані знайдемо довжини діагоналей чотирикутника ABCDAC=корінь((-1-(-3))^2+(6-(-2))^2)=корінь(4+64)=корінь(68)BD=корінь((-6-2)^2+(3-1)^2)=корінь(64+4)=корінь(68)діагоналі даного параллелограма рівні, тому він є прямокутником даний чотирикутник(параллелограм) є ромбом і прямокутником, тому він квадратПохожие задачи: