Processing math: 100%

Из точки вне окружности проведена секущая, пересекающая окружность в точках, удалённых от данной на 12 см и 20 см. Расстояния от данной точки до центра окружности равно 17 см. Найдите радиус окружности


Для нахождения радиуса строим два прямоугольных треугольника. Первый: RCD и Второй RBDНам известно, что отрезок AC=20см, BC=12см, DC=17см. Так как RC=RB+BC; RB=AB/2; AB=AC-BC, получаем RC=(AC-BC)/2+BC=(20-12)/2+12=16см. По теореме Пифагора находим катет RD=    Применяем вновь теорему Пифагора, для того чтобы найти гипотенузу DB в треугольнике RBDRB=AB/2; AB=AC-BC, получаем RB=(AC-BC)/2=(20-12)/2=4см   Гипотенузу DB так же является искомым радиусом окружности. Ответ: R=7см



Вариант 2

Для нахождения радиуса строим два прямоугольных треугольника. Первый: RCD и Второй RBDНам известно, что отрезок AC=20см, BC=12см, DC=17см. Так как RC=RB+BC; RB=AB/2; AB=AC-BC, получаем RC=(AC-BC)/2+BC=(20-12)/2+12=16см. По теореме Пифагора находим катет RD=    Применяем вновь теорему Пифагора, для того чтобы найти гипотенузу DB в треугольнике RBDRB=AB/2; AB=AC-BC, получаем RB=(AC-BC)/2=(20-12)/2=4см   Гипотенузу DB так же является искомым радиусом окружности. Ответ: R=7см



точку вне окружности назовём M, секущая MB=12,MC=20,MO=17 проведём касательную MA. по теорема об отрезках, связанных с окружностью:MA2=MCMB.MC=1220=15,5.в треугольние MOA: OA является радиусом OA=MO2MA2=289240,257см


Смотрите решение в формате .doc



Похожие задачи:
Loading...