В равнобедренном треугольнике АВС с основанием АС проведена медиана ВD. На строронах АВ и СВ отмечены соответственно точки Е и F так, что АЕ = СF. Докажите, что : 1) треугольник BDE=треугольнику BDF; 2)треугольник ADE = CDF

Док-во:1)треугольник АВС-равнобедренный (по условию), значит АВ=ВС(по определению равнобедренного треугольника), АЕ=СФ(по условию), значит ВЕ=ВФ. ВД-общая сторона, ВД-является также биссектрисой угла В (по св-ву равнобедренного треугольника), значит угол ЕВД= углу ДВФ, следовательно треугольник ЕВД= треугольнику ДВФ ( по 1 признаку, т.е. по двум сторонам и углу м/у ними). 2)т.к. треугольник АВС-равнобедренный (по условию), то угол А= углу С ( по св-ву равнобедренного треугольника, что углы при основании равны), АЕ=ФС (по условию), АД=ДС (т.к. ВД-медиана), следовательно треугольник АЕД=ДСФ(по 1 признаку). 





Похожие задачи: