Докажите, что если вершины ломаной не лежат на одной прямой, то длина ломаной больше длины отрезка, соединяющего ее концы.
Пусть А1А2А3 … An-1,An — ломаная, точки A1, A2, … Аn не
лежат на одной прямой.
Доказать, что А1А2 + А2А3 + ... + Аn-1Аn > А1Аn. Точки А1, А2, А3 не лежат на одной прямой, по неравенству треугольника имеем:
А1А2 + А2А3 > А1А3. (1)
Для ломаной А1А3А4 получим:
А1А3 + А3А4 > А1А4. (2)
Подставив (1) в (2), получим:
А1А2 + А2А3 + А3А4 > А1А4. Продолжая преобразования, дальше аналогично получим: А1А2 + А2А3 + ... + Аn-1Аn > А1Аn, что и требовалось доказать.
Похожие задачи: