Докажите, что треугольники ABC и А1В1С1 равны, если АВ=А1В1, АС=А1С1, АМ=А1М1, где AM и А1М1 — медианы треугольников.
Похожие задачи:
В треугольниках ABC и А1B1С1 медианы AM и А1М1 равны, BC=B1С1 и ∠AMB=∠A1M1B1. Докажите, что ΔABC=ΔA1B1C1.
смотреть решение >>
смотреть решение >>
Докажите, что медиану АА1 треугольника ABC можно вычислить по формуле. Используя эту формулу, докажите, что если две медианы треугольника равны, то треугольник равнобедренный.
смотреть решение >>
смотреть решение >>
В треугольниках ABC и А1В1С1 АВ=А1В1, AС=A1С1, ВС=В1С1. Докажите, что существует движение, при котором точки А, В и С отображаются в точки A1, В1 и C1, притом только одно.
смотреть решение >>
смотреть решение >>
1) Треугольник АВС и треугольник А1В1С1 равны, причём равны стороны ВС=В1С1,ВА=В1А1. Докажите, что высоты ВD и В1D1 равны.
смотреть решение >>
2) На сторонах АВ и ВС треугольника АВС отмечаны точки D и Е из этих точек к прямой АС проведены перпендикуляры DK и ЕР,причём отрезок АК=РС,DK=РЕ. Докажите, что отрезок АВ=ВС.
смотреть решение >>
1)KA - перпендикуляр к плоскости треугольника ABC. Известно, ЛИ перпендикулярно к BC. а) докажите, что треугольник ABC - прямоугольный. б) докажите, перпендикулярность плоскостей KAC и ABC. в) найдите KA, если AC=13см, BC=5см, угол KBA=45 градусов. 2) основание AC равнобедренного треугольника лежит в плоскости *альфа*. Найдите расстояние от точки B до плоскости *альфа*, если AB=20 см, AC=24 см, а двугранный угол между плоскостями ABC и *альфа* равен 30 градусам. 3) из точки A к плоскости *альфа* проведены наклонные AB и AC, образующие с плоскостью *альфа* равные углы. известно, чо BC=AB. Найдите углы треугольника ABC.
смотреть решение >>
смотреть решение >>