Даны два угла hk и h1k1 и отрезок PQ. Постройте треугольник ABC так, чтобы AB=PQ, ∠A=∠hk,
4) стороны углов А и В пересекаются в точке С. ΔАВС - искомый.
Похожие задачи:
В треугольнике АВС биссектриса AD и CE пересекаются в точке M, BM=m, угол АВС= альфа. Найдите расстояние от точки М до стороны АС.
смотреть решение >>
смотреть решение >>
1. Дан угол с вершиной внутри круга. Доказать, что этот угол тупой.
смотреть решение >>
2. Из вершины А треугольника АВС проведена высота АD. Точки F и Е - середины сторон АВ и АС. Найти периметр DEF, если периметр АВС = 64 см.
3. Биссектрисы углов В и С параллелограмма АВСD пересекаются в точке М, лежащей на стороне DA. Найдите периметр параллелограмма ABCD, если ВМ=6 см, а СМ=8 см.
4. В окружности радиуса √2 см проведена хорда, длина которой составляет одну треть диаметра. Найдите расстояние от центра окружности до этой хорды.
смотреть решение >>
Высоты треугольника АВС, проведенные из вершин А и С, пересекаются в точке М. Найдите ∠АМС, если ∠А = 70°, ∠С = 80°.
смотреть решение >>
смотреть решение >>