В трапеции а. ВСD угол А 90 градусов, боковая сторона СD перпендикулярна диагонали АС, СD =3 см, АD =5 см. А) найдите площадь трапеции. Б) найдите площадь треугольника АМD, если М - середина на СD.

1) это получается прямоугольная трапеция.. так как диагональ АС перпендикулярна стороне СD то получается прямоугольный треугольник АСD.. по теореме Пифагора найдем диагональ АС  = 4 см.. теперь для площади трапеции нужна высота и верхнее основание, для начала найдем высоту... опустим перпендикуляр из точки С на сторону АD... получится высота треугольника АСD.. по правилу чтобы найти высоту нужно найти проекции катетов на гипотенузу.. их найдем по формуле а(квадрат) = АD * на проекцию катета а..и так далее... высоту найдем умножив проекции катетов  под корнем = 12/5 = 2.4 см.. далее... теперь найдем верхнее основание: так же по теореме Пифагора найдем, он равно = 16/5 = 3.2 см.. подставляем все в формулу для вычисления площади: S = (a+b)/2 * h = (16/5 + 5) / 2  * 12/5 =  9,84 см.2) так.. Найдем площадь треугольника АМД: попробуем найти площадь треугольника  АСД..и от него отнимем площадь треугольника АСМ отсюда получим площадь треугольника АМД.. Найдем площадь треугольника АСМ = (1/2) * a * b  где а и  b  катеты ...а = 4  b = 3/2 отсюда площадь  =  3 см. теперь отнимем от площади треугольника АСД  площадь треугольника АСМ  6 - 3 = 3см.



Похожие задачи: