Основание прямого параллелепипеда-ромб с периметром 40см. Боковое ребро параллелепипеда равно 9см, а одна из его диагоналей-15 см. Найдите объем параллелепипеда.

Диагональ ромба равна d^2=l^2-h^2 d^2=(15)^2-9^2=144 d=12 и половина диагонали равна d/12=6Сторона ромба равна  p/4=40/4=10Так как в ромбе в точке пересечения делятся по полам и перпендикулярные то половина второй диагонали равна  d1^2=a^2-(d/2)^2=100-36=64  d1^2=8 и вся диагональ равна 16Площадь ромба равна  S=d1*d2/2=12*16/2=96A объем параллелепипеда  равен V=Sосн *H=96*9=864 





Похожие задачи: