АВСД-квадрат со стороной, равной 4 см. Треугольник АМВ имеет общую сторону АВ с квадратом, АМ=ВМ=2 корней из 6 см. Плоскости треугольника и квадрата взаимно перпендикулярны. 1) Докажите, что ВС перпендикулярно АМ. 2) Найдите угол между МС и плоскостью квадрата.
1) Если в одной из двух перпендикулярных плоскостей провести перпендикуляр к их линии пересечения, то этот перпендикуляр будет перпендикулярен второй плоскости это значит, что ВС перпендикулярна (AMB), но прямая называется перпендикулярной плоскости, если она перпендикулярна любой прямой в этой плоскости. значит Докажите, что ВС перпендикулярно АМ.2)опустим в треугольнике АМВ перпендикуляр МТ из точки М ,(Т лежит на АВ)
так как АМ=ВМ МТ- медиана и АТ=ВТ=2 см,
полупериметр АМВ=(2*2корень(6)+4)/2=2(корень(6)+1)
по формуле Герона площадь треугольника АМВ равна: Корень(2(корень(6)+1)*2*2*2(корень(6)-1)=4корень(5)
но лощадь треугольника АМВ равна:0,5*АВ*МТ=2МТ, а значит МТ=2корень(6)
рассмотрим треугольник ВТС - прямоугольный, по теореме Пифагора: СТ=корень(16+4)=2корень(5)
МТ перпендикулярна плоскости квадрата, а значит и перпендикулярна СТ, значит треугольник МСТ-прямоугольный, по тереме Пифагора: МС=корень(20+20)=2корень(10)
Похожие задачи: