В четырехугольнике ABCD, вписанном в окружность, биссектрисы углов А и В пересекаются в точке, лежащей на стороне CD. Докажите, что СD=BC+AD.
Решение.
Похожие задачи:
1. Площадь ромба равна S. Найдите площадь четырехугольника, вершинами которого являются середины сторон ромба.
смотреть решение >>
2. Две окружности с центрами в точках О1 и О2 пересекаются в точках А и А1, а отрезки АВ и АС - их диаметры. Найдите величины углов АА1В и АА1С и докажите, что точки В, А1 и С лежат на одной прямой.
3. Медианы треугольника со сторонами 5 см, 6 см и 7 см пересекаются в точке О. Найдите расстояние от точки О до прямых, содержащих стороны треугольника.
4. Четырехугольник ABCD вписан в окружность. Известно, что угол ABD=30*, угол ACB=30*, угол BDC=20*. Найти углы четырехугольника ABCD.
смотреть решение >>
ОЧЕНЬ Четырёхугольник ABCD- параллелограмм, диагонали которого пересекаются в точке О, точка F- середина стороны AB. Докажите, что четырёхугольник AFOD- трапеция.
смотреть решение >>
смотреть решение >>
Точки K и F соответственно середины сторон BC и CD ромба ABCD, в котором угол A=60градусов, а диагонали пересекаются в точке O. Докажите, что диагонали четырехугольника KFDO взаимно перпендикулярны
смотреть решение >>
смотреть решение >>
Сторона АВ параллелограмма ABCD продолжена за точку В на отрезок BE, а сторона AD продолжена за точку D на отрезок DK. Прямые ED и КВ пересекаются в точке О. Докажите, что площади четырехугольников ABOD и СЕОК равны.
смотреть решение >>
смотреть решение >>
В треугольнике АВС проведены медианы AA1 и BB1, которые пересекаются в точке М. В треугольнике АМВ проведена средняя линия PQ. Докажите, что четырехугольник A1B1PQ — параллелограмм. 2) Докажите, что любые две медианы треугольника в точке пересечения делятся в отношении 2:1, считая от вершины. 3) Докажите, что все три медианы треугольника пересекаются в одной точке.
смотреть решение >>
смотреть решение >>