На поверхности шара даны три точки. Прямолинейные расстояния между ними 6 см, 8 см, 10 см. Радиус шара 13 см. Найдите расстояние от центра до плоскости, проходящей через эти точки.

Проведем OO1 перпендикулярно плоскости ΔАВС. Тогда прямоугольные треугольники АO1O, BO1O, СО1О равны по катету и гипотенузе (так как AO=BO=CO — радиус шара и ОО1— общий катет). Так что О1—центр окружности, описанной около треугольника АВС (О1А=О1В=О1С).

Далее, заметим, что 62 + 82 = 102, так что ΔАВС прямоугольный с гипотенузой АС. Поэтому О1 — середина АС, так что

Далее, в прямоугольном ΔAOO1:

Ответ: 12 см.





Похожие задачи: