Стороны треугольника АВС касаются шара. Найти радиус шара, если АВ=8, АС=12, Вс=10 и расстояние от центра шара О до плоскости треугольника АВС равно корень из 12.

Пусть расстояние до плоскости тр-ка равно d=кор12, радиус вписанной в тр. АВС окр-ти (сечения сферы пл-тью АВС) равен r. Тогда радиус шара:R = кор(d^2 + r^2). Найдем r. Воспользуемся двумя формулами для площади тр-ка:S = p*r и S = кор[p(p-a)(p-b)(p-c)], где р=(a+b+c)/2 - полупериметр.р = (8+10+12)/2 = 15Тогда площадь по формуле Герона:S = кор(15(15-8)(15-10)(15-12)) = кор(15*7*5*3)= 15кор7Тогда: 15кор7 = 15*r. Отсюда r = кор7Тогда радиус шара:R = кор(12 + 7) = кор19.Ответ: корень из 19





Похожие задачи: