Касательные проведённые из одной точки к окружности с радиусом 12см образует угол 60 град. каково наименьшее расстояние от этой точки до окружности

Попытаюсь прикрепить рисунок с решением.... Опять не получилось. Пусть АВ и АС - данные касательные. ОС = 12 см - радиус окружности. Через точки А и О проведем секущую. Она пересечет окружность в точках М (ближняя к А) и N. АМ = ?Из прям. тр-ка АОС:АС = ОС/tg30 = 12кор3 см. Пусть теперь АМ=х, тогда АN = 24+х. По теореме о касательной и секущей:АС^2 = АМ*AN.432 = х(24+х).     x^2 + 24x - 432 = 0.   D = 2304. корD = 48. Тогда подходящий корень:х = (-24+48)/2 = 12 см.Ответ: 12 см.

Начерти окружность, обозначь точку В, лежащую вне окружности, проведи  через данную точку две касательные, точки касания обозначь А и  С, точка  О - центр окружности. Так как касательная перпендикулярна радиусу в точке касания, то мы получили два прямоугольных треугольника ОАВ и СОВ, равных между собой, с меньшими углами 60/2=30 град. и катетами, лежащими против этих углов равными радиусу окружности АО=ОС=12 см,катет, лежащий против угла 30 град= 1/2 гипотенузы,следует ОВ=2*АО=24 см, расстояние до окружности=ОВ-r=24-12=12 cм. 





Похожие задачи: