Отрезок АВ длины а разделен точками P и Q на три отрезка AP, PQ, QB так, что AP=2PQ=QB. Найдите расстояние между точкой А и серединой отрезка QB

Из условия задачи видно что отрезок АВ получился зазделен на три отрезка AP,PQ,QB, AP=QB=2PQ, следовательно длина АВ равна 5 * PQ, следовательно PQ=1/5*а. Поскольку QB=2PQ, то растояние от точки Q до середины QB = PQ, а от точки А до до середины QB = 4 * PQ. Следовательно искомая величина равна 4*1/5*а = 4/5*а 





Похожие задачи: