Около окружности описана трапеция( равнобедренная), длина средней линии которой равна 5 см, а синус острого угла при основании 0, 8. Вычислите площадь трапеции.

Пусть основания трапеции BC<AD1) Длина средней линии равна полусумме оснований, значит сумма оснований равна 5*2=10 (см)2) По свойству описанной трапеции АД+ВС=АВ+СД, но АД+ВС=10, а АВ=СД и АВ+СД==2АВ, тогда 2АВ=10, значит АВ=5 (см)3) Опустим на нижнее основание АД высоту ВК и рассмотрим прямоугольный тр-к АКВ. В нем синус угла А равен отношению катета ВК к гипотенузе АВ. По условию ВК/АВ=0,8=4/5. АВ=5. Тогда ВК/5=4/5, значит ВК=4 (см)4) S=((BC+AD)/2) * BK=5*4=20 (квадр. см)





Похожие задачи: