На рисунке 54 OA = OD, OB = ОС, ∠1=74°, ∠2=36°. а) Докажите, что треугольники AOB и DOC равны; б) найдите ∠ACD.
Похожие задачи:
1)середины сторон параллелограмма последовательно соединены между собой. Найдите площадь образовавшегося четырехугольника, если площадь данного параллелограмма равна 20.
смотреть решение >>
2)основания трапеции ABCD равны 1 и 3. диагонали АС и BD пересекаются в точке О. найдите отношение площадей треугольников AOB и COD.
смотреть решение >>
Треугольники АВС и PQR равны. Углы второго треугольника известны: ∠P = 40°, ∠Q = 60°, ∠R = 80°. Найдите углы треугольника АВС.
смотреть решение >>
смотреть решение >>
В параллелограмме ABCD диагонали пересекаются в точке O. Смежные стороны параллелограмма равны 10 см и 15 см. Найдите разность периметров треугольника AOB и треугольника AOD.
смотреть решение >>
смотреть решение >>
Медиана AD треугольника ABC продолжена за сторону ВС на отрезок DE, равный AD, и точка Е соединена с точкой С. а) Докажите, что ΔABD = ΔECD; б) найдите ∠ACE, если ∠ACD = 56°, ∠ABD = 40°.
смотреть решение >>
смотреть решение >>
1. Через точки A и B, расположенные в перпендикулярных плоскостях, проведены к линии их пересечения перпендикуляры AC и BD. Вычислите длину отрезка CD, если AC=9см, BD=8см, AB=17см.
2. Через середину O катета MK прямоугольного треугольника MKP проведен к его плоскости перпендикуляр OI, равный \( a\sqrt{3} \), \( \angle K = 90° \), MK=4a, PK=b. Найдите: a) площади треугольника TPK и его проекции на плоскость треугольника MKP; b) расстояние между прямыми TO и PK.
смотреть решение >>
2. Через середину O катета MK прямоугольного треугольника MKP проведен к его плоскости перпендикуляр OI, равный \( a\sqrt{3} \), \( \angle K = 90° \), MK=4a, PK=b. Найдите: a) площади треугольника TPK и его проекции на плоскость треугольника MKP; b) расстояние между прямыми TO и PK.
смотреть решение >>