Сечение шара площадью 16 π см2 находится на расстоянии 3 см от центра шара. Найдите площадь поверхности шара

Проведём через центр шара О плоскость перпендикулярную секущей плоскости. На неё шар проецируется как круг радиусом R, а секущая плоскость будет хордой АВ на расстоянии ОК=3 от центра. Проведём радиусы к точкам хорды ОА и ОВ. Площадь сечения равна 16 пи=пи*r квадрат. Отсюда r=4. Это половина хорды, то есть в треугольнике ОКВ  КВ= r=4. Тогда по теореме Пифагора R= корень из(КВ квадрат+ОК квадрат)=корень из(16+9)=5. По формуле площадь поверхности шара S=4пи*R квадрат=4*3,14*25=314.





Похожие задачи: