В треугольник со сторонами 20, 34, 42 вписан прямоугольник с периметром 40 так, что его сторона лежит на большей стороне треугольника. Найдите стороны прямоугольника.

Видимо надо найти стороны ПРЯМОУГОЛЬНИКА Так как стороны ТРЕУГОЛЬНИКА в условии даны. Рисунок смотри во вложении. Пусть х и у - стороны пр-ка. Проведем дополнительно высоту ВЕ тр-ка АВС. Найдем ее. Площадь по формуле Герона:S = корень(48*28*14*6) = 336 (полупериметр р = 48) С другой стороны:S = (1/2)*42*BE = 336Отсюда ВЕ = 16Из подобия тр-ов ВКМ и АВС:х/42 = ВК/20Отсюда ВК = 10х/21,  АК = 20  -10х/21 = (420-10х)/21Из подобия тр-ов АКР и АВЕ:у/16 = АК/20Или: у/16 = (42-х)/428х + 21у = 336Другое уравнение системы получим из условия, что периметр пр-ка равен 40:х + у = 20. Домножим это уравнение на (-8) и сложим с предыдущим.13у = 176у = 176/13,  тогда х = 20  - 176/13 = 84/13Ответ: 176/13;  84/13.






Похожие задачи: