Через три данные точки проведите окружность. Всегда ли задача имеет решение?
Соединяем точки А, В и С. Находим середины отрезков АВ, ВС и АС, соответственно К, L и М. Проводим перпендикуляры (серединные перпендикуляры ΔABC). Находим точку О-их точку пересечения. Проводим окружность радиуса АО = ВО = СО с центром в т. О. Вокруг треугольника всегда можно описать окружность, поэтому задача не имеет решения, лишь когда лежат на одной прямой.
Вставьте пропущенные слова.
Окружность - это геометрическая фигура, состоящая из всех _______ плоскости, расположенных на ______________ расстоянии от данной точки.
Диаметр – это хорда, _____________________ через _______________ окружности. Касательная - это прямая, имеющая с окружностью __________ общую точку. Центральный угол – это угол, вершина которого совпадает с _______________
_______________. Вписанный угол измеряется ____________________ дуги, на которую он _________
____________. Вписанный угол, опирающийся на диаметр _______________.
смотреть решение >>
2) Найдите длину средней линии трапеции, в которой диагонали взаимно перпендикулярны, а их длины равны 10 и 24.
3) Треугольник АВС таков, что АВ не равно ВС, а отрезок, соединяющий точку пересечения медиан с центром вписанной в него окружности, параллелен стороне АС. Найдите периметр треугольника АВС, если АС=1.
смотреть решение >>
Даны точки М(3;0;-1), К(1;3;0), Р(4;-1;2). Найдите на оси Ох такую точку А, чтобы векторы МК и РА были перпендикулярны.
Две вершины равностороннего треугольника расположены в плоскости альфа. Угол между плоскостью альфа и плоскостью данного треугольника равен фи. Сторона треугольника равна m. Вычислите:
1) расстояние от третьей вершины треугольника до плоскости альфа;
2) площадь проекции треугольника на плоскость альфа.
смотреть решение >>