Найдите углы треугольника ABC, если известно, что биссектриса AD равна AC и, кроме того, AD=DB/
1) обозначим угол CAD = x, тогда угол DAB = x, так как АД- биссектрисаи угол АСД = y 2) так как АС=АД и АД=ДВ из условия, то треугольники АСД и АДВ равнобедренные3) так как треугольники АСД и АДВ равнобедренные, то углы САД=ДАВ=АВД=х, АСД=АДС=у4) сумма углов треугольника = 180 градусов и сумма смежных углов = 180 градусов, значит выразим угол АДВ=180-2х=180-у. решаем равенство, находим зависимость у от х: у=2х5) рассмотрим треугольник АСД: х+2у=х+2х+2х=5х=180; 5х=180; х=36 (градусов)тогда у= 36*2=72 градуса6) угол А = САД=ДАВ=2х=72 градуса угол В = х = 36 градусов угол С = АСД = у=2х= 72 градусаОТВЕТ: 72, 36, 72Это ОЧЧЕНЬ хороший треугольник, потому что из него можно легко найти выражение для тригонометрических функций углов, кратных pi/10 (то есть 18 градусов); Пусть угол DAC = Ф;Тогда угол BAD = Ф; (AD - биссектриса)угол ABD = Ф; (треугольник ADB равнобедренный)угол ADC = угол DAB + угол ABD = 2*Ф; (внешний угол треугольника)угол ACD = угол ADC = 2*Ф; (треугольник ADС равнобедренный) Итак, в треугольнике ADC углы Ф, 2*Ф и 2*Ф. Остюда Ф = pi/5 = 36 градусов. Само собой, что в треугольнике АВС углы при основании 2*Ф = 72 градуса, угол при вершине 36 градусов. Треугольник АВС равнобедренный - при решении мы этим нигде не пользовались, это само так получилось.
Похожие задачи: