Лесной участок имеет форму круга. Чтобы обойти этот участок по опушке, идя со скоростью 4 км/ч, нужно затратить на 45 мин больше, чем для того, чтобы пересечь его по диаметру. Найдите длину опушки данного участка.
Дано:
Найти:
Решение:
Пусть время, если идти по диаметру, равно t, тогда
3. Лесной участок имеет форму круга. Что бы обойти этот участок по опушке идя со скоростью 4 км/ч, нужно затратить на 45 мин. больше, чем для того, чтобы пересечь его по диаметру. Найдите длину опушки данного участка.
смотреть решение >>
смотреть решение >>
2. Вокруг трапеции описана окружность, центр которой находится на ее большем основании. Найдите углы трапеции, если ее меньшее основание в два раза меньше большего основания.
3. Угол между биссектрисой и высотой, проведенной из вершины большего угла треугольника, равен 12*. Найдите углы этого треугольника, если его наибольший угол в четыре раза больше наименьшего угла.
4. О1 и О2 - центры двух касающихся внешним образом окружностей. Прямая О1О2 пересекает первую окружность (с центром в точке О1) в точке А. Найдите диаметр второй окружности, если радиус первой равен 5 см, а касательная, проведенная из точки А ко второй окружности, образует с прямой О1О2 угол в 30*.
смотреть решение >>
2) Найдите длину средней линии трапеции, в которой диагонали взаимно перпендикулярны, а их длины равны 10 и 24.
3) Треугольник АВС таков, что АВ не равно ВС, а отрезок, соединяющий точку пересечения медиан с центром вписанной в него окружности, параллелен стороне АС. Найдите периметр треугольника АВС, если АС=1.
смотреть решение >>
Даны точки М(3;0;-1), К(1;3;0), Р(4;-1;2). Найдите на оси Ох такую точку А, чтобы векторы МК и РА были перпендикулярны.
Две вершины равностороннего треугольника расположены в плоскости альфа. Угол между плоскостью альфа и плоскостью данного треугольника равен фи. Сторона треугольника равна m. Вычислите:
1) расстояние от третьей вершины треугольника до плоскости альфа;
2) площадь проекции треугольника на плоскость альфа.
смотреть решение >>