Найдите расстояние от середины отрезка АВ до плоскости, не пересекающей этот отрезок, если расстояние от точек А и В до плоскости равны: 1) 3,2 см и 5,3 см; 2) 7,4 см и 6,1 см; 3) а и b.

Пусть АВ — искомый отрезок. Е — середина отрезка АВ. АА1, ЕЕ1, ВВ1 — перпендикуляры, опущенные из точек А, Е, В на плоскость α. По теореме 17.4 эти перпендикуляры параллельны между собой. Тогда решим сначала общий случай AA1 = a и BB1 = b.

Теперь подставив вместо a и b числа, получим:





Похожие задачи: