Найдите радиус шара, описанного около правильного тетраэдра с ребром а.
Пусть высота тетраэдра DО1 пересекает поверхность шара в некоторой точке М. Высота в правильной пирамиде проходит через центр окружности, описанной около основания. Так что O1С — радиус описанной около АВС окружности. ΔАВС равносторонний, так что
Рассмотрим осевое сечение шара, содержащее точку С. ΔDСM— прямоугольный, так как вписанный угол ∠DCM опирается на диаметр DM. Тогда катет DC — есть среднее геометрическое между
своей проекцией и гипотенузой. То есть
В ΔO1DC:
Тогда
А радиус шара
Похожие задачи: