Найти длину окружности описанной около правильного треугольника со стороной 12см и площадь круга вписанного в этот треугольник.
Решение: Длина окружности равна 2*pi*r, где r – радиус окружности. Радиус окружности, описанной около треугольника равен R=a*корень(3)3.R= a*корень(3)3=12*a*корень(3)3= 4*корень(3). Радиус окружности, вписанной в треугольник равенr=a*корень(3)6r=a*корень(3)6= 12*корень(3)6= 2*корень(3). Длина описанной окружности равна:2*pi*4*корень(3)=8*корень(3)*pi. Длина вписанной в треугольник окружности равна2*pi* 2*корень(3)=4*корень(3)*pi. Ответ:8*корень(3)*pi,4*корень(3)Похожие задачи: