В прямоугольном треугольнике АДС угол В-прямой, катет АД=3см и угол ДАС=30 гр. Найдите:а)остальные стороны треугольника АВС;б)площадь АВС;в)длину высоты, проведённой к гипотенузе. пожайлуста.
А) Другой катет СД = 3*tg30 = 3/кор3 = кор3 см. Гипотенуза АС = СД/sin30 = 2*СД = 2кор3 см.б) S = АД*СД / 2 = (3кор3)/2 см^2.в) h = АД*СД / АС = (3кор3)/(2кор3) = 1,5 см.
Скорее всего в условии опечатка треугольник АВС1) пусть гипотенуза АС=2х, катет ВС=х (катет, лежащий против угла 30 град.=1/2 гипотенузы4х^2=x^2+3^23x^2=9x=V3 - второй катет. АС=2V3 - гипотенуза2)S=AB*BC/2=3V3/2 кв.см3) S=AC*h/2h=S*2/AC=3V3*2/(2V3*2)=1,5 см
Похожие задачи: