Даны два равнобедренных треугольника с общим основанием. Докажите, что их медианы, проведенные к основанию, лежат на одной прямой.
В ΔАВС: ВО — медиана, а значит, и высота (ΔАВС — равнобедренный). Таким образом, ВО⊥АС.
В ΔADC: DO — медиана, а значит, и высота (ΔADC — равнобедренный). Таким образом, DO⊥АС.
Таким образом, к отрезку АС через точку О проведены два перпендикуляра. По теореме 2.3 через точку, лежащую на прямой, можно провести перпендикуляр, и притом единственный. Таким образом, медианы лежат на одной прямой.
Похожие задачи: