В системе координат даны точки А(-3;-5), В(2;2) и С(5;-7). а) Найдите координаты проекции точки А на прямую ВС. б) На прямой АВ найдите такую точку М, что |СМ * АВ| = 122. (В пункте б СМ,АВ - векторы)

А) Находим уравнение прямой ВС:у = кх+b    Подставим сюда координаты точек В и С, составим систему и найдем k и b:5k + b = -7                  b=-7-5k = 82k+ b = 2 3k = -9 k = -3            Получили уравнение: у = -3x + 8Опускаем перпендикуляр из А на ВС, получим точку К -проекция А на ВС. Прямая АК имеет угловой коэффициент: -1/k = 1/3Значит ее уравнение имеет вид:у = x/3  +b. Подставим координаты точки А:-1 + b = -5        b = -4   Уравнение АК: у = х/3  - 4Ищем координаты точки пересечения АК и ВС: (это и есть искомая проекция)-3х+8 = х/3  - 4   10х/3 = 12   х = 3,6   у = -10,8 + 8 = -2,8.Ответ: (3,6; -2,8).б) Вектор АВ: (2+3; 2+5):(5;7)  Пусть М(х;у). Тогда вектор СМ:((х-5); (у+7)) Скалярное произведение (СМ*АВ) = 5(х-5) + 7(у+7) = 122С другой стороны точка М принадлежит АВ. Найдем уравнение АВ:у = kx+b-3k+b=-5             b = -5+3k = -4/52k+b=2             5k=7    k = 7/5Уранение АВ: у = 7х/5  - 4/5 - вот и еще уравнение для нахождения координат точки М. Получили систему:5(х-5) + 7(у+7) = 122           5х + 7у = 98 |*5    25х + 35у = 490 у = 7х/5  - 4/5                    5у - 7х = -4  |*(-7)     49х - 35у = 28 74х = 518   x = 7    7у = 98 - 35 = 63    у = 9Ответ: М(7; 9).





Похожие задачи: